
On representations, 
symmetries, groups, 

variational principles

… and all that



Overview

• Problem of disentangled representations.
• How symmetries have been used to solve it.
• Formalised as Groups.
• Hint to its potential relation with variational principles 

(Free Energy Principle).
• Hint to richer representations using Groupoids.
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Disentangled Representation Learning
Caselles-Dupré et al.

• The world and its representations are too complex. 
• We need to find low-dimensional representations of the world for 

which the underlying structure is separated into disjoint parts (i.e., 
disentangled) reflecting its compositional nature.
• Two issues:
• reduce computational complexity (as in the input size) and 
• transfer knowledge by generalizing over “similar” 

representations, that is, representations that are composed of and 
preserved (up to isomorphism?) over the same parts and that, in 
turn, support prediction.
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Disentangled Representation Learning
Caselles-Dupré et al.

• Symmetry transformations change some properties of the 
underlying world state, while leaving all other properties 
invariant --gives exploitable structure.
• Formalised using group theory. Groups are composed of such 

transformations. Group actions are the effect of the 
transformations on the state of the world and representation.
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What is a group (algebraic definition)
• A group is a set, G, together with a binary operation • that combines any 

two elements a and b to form another element, denoted a • b. 
• (G, •) must satisfy four group axioms:
• Closure: For all a, b in G, the result of the operation, a • b, is also in G.
• Associativity: For all a, b and c in G, (a • b) • c = a • (b • c).
• Identity element: There exists an element e in G such that, for every 

element a in G, the equation e • a = a • e = a holds. 
• Inverse element: For each a in G, there exists an element b in G, such 

that a • b = b • a = e.
• Interestingly, a • b = b • a may not always be true.
• Example: The set of integers together with the addition operation. But not the 

set {0,1,2} under addition or the set of integers under subtraction.
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Symmetry group
• The symmetry group (of a geometric object) is the group of 

all transformations under which the object is invariant, endowed 
with the group operation of composition. Such a transformation is an 
invertible mapping which takes the object to itself, and which 
preserves all the relevant structure of the object. Examples: rotations, 
reflections, translations (in space and time).
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Some history …
• The study of groups flourished in the XIX century, originally to solve algebraic 

equations (E. Galois).
• In geometry, F. Klein proposed the Erlangen Program to classify various 

geometries (Euclidean, affine, and projective) with respect to geometrical 
properties that are left invariant under rotations and reflections. 
• It was also in Göttingen where E. Noether proved the connection between 

symmetries and conservation laws (e.g., total energy is conserved under 
translation in time).
• In Physics, the special theory of relativity unified seemingly contradictory 

mechanical and electromagnetic phenomena of the hand of Lorentz groups; 
and the general theory of relativity explained gravity under the group of all 
diffeomorphisms of a space-time. The Standard Model classifies all 
elementary particles and their interactions according to their flavour, charge 
and colour symmetries, and, in so doing, unifies electromagnetism, QED and 
QCD and explains electroweak interactions (H. Weyl). 
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Why symmetries?
• We attribute symmetry properties to theories and laws (symmetry 

principles). It is useful to derive the laws of nature and to test their 
validity by means of the laws of invariance, rather than to derive the 
laws of invariance from what we believe to be the laws of nature.
• We may derive specific consequences with regard to particular 

phenomena on the basis of their symmetry properties (symmetry 
arguments). P. Curie postulated a necessary condition for a given 
phenomenon to happen, namely, that it is compatible with the 
symmetry conditions established by a principle.
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Back to representations

• Let W be a set of world-states W = (w1,…,wm).
• There is a generative process b : W à O leading from world-states to 

observations (these could be pixel, retinal, or any other potentially 
multi-sensory observations), and an inference process h : O à Z
leading from observations to an agent’s representations.
• We consider the composition f : W à Z (f = h • b).
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Interlude: Free Energy Principle  
(K. Friston)

• Biological systems resist tendency to disorder by maintaining their 
states in the face of a changing environment (homeostasis).
• Tradeoff between value (expected reward, expected utility) and its 

complement, surprise (prediction error, expected cost).
• States must have low entropy (high probability that the system is in 

any of a small number of states). Entropy is the long-term average of 
surprise.
• Biological agents must minimize surprise.
• Free energy is an upper bound on surprise. Thus, agents must 

minimize free energy: Free Energy Principle.  
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Principle of Least Action

• Of all possible paths, why a parabola?
• It minimizes the “action”, i.e., the 

integral of kinetic minus potential.
• Gives equations of motion.
• Uses calculus of variations (that is, 

small changes to find the minimum).
• Encapsulates conservation laws and 

symmetries.
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Change 
sensory input

sensations – predictions

Prediction error

Change 
predictions

Action Perception

action and perception to suppress prediction errors and minimise surprise

…free-energy is basically prediction error

11



How do we minimize Free Energy? 
The Bayesian Brain
• A probabilistic model that can generate predictions, against which 

sensory samples are tested to update beliefs about their causes. This 
generative model is decomposed into a likelihood (the probability of 
sensory data, given their causes) and a prior (the a priori probability 
of those causes).
• Perception then becomes the inference process of inverting the 

likelihood model (mapping from causes to sensations) to access the 
posterior probability of the causes, given sensory data (mapping from 
sensations to causes). 
• Rings a bell?
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Back to disentanglement

• A group G of symmetries acting on W via a group action φ : G x W à W.
• We would like to find a corresponding group action ψ : G x Z à Z so that 

the symmetry structure of W is reflected in Z (Condition 1).

• We also want the group action ψ to be disentangled, which means that 
applying Gi to Z leaves all sub-spaces of Z unchanged but the one 
corresponding to the transformation Gi (Condition 2).
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• Formally, the representation Z is disentangled with respect to the 
decomposition G = G1 x … x Gn if:

1. There is a group action ψ : G x Z à Z.
2. The map f : W à Z is equivariant between the group actions on 

W and Z:

3. There is a decomposition Z = Z1 x … x Zn such that each Zi is fixed 
by the action of all Gj , j ≠ i and affected only by Gi.

G x W φ W

idG x f                                          f

G x Z ψ Z

Disentanglement

Symmetry-based
representation
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Problem in paradise

• How can one learn a disentangled representation? This task involves 
knowledge about how the group action affects Z. The group action is 
defined to be the effect of symmetries on the representation.
• These symmetries can be translations, rotations, time translations, 

etc. In AI, we would design an algorithm that learns from examples. 
We thus need, in practice, a way to apply these transformations on 
observations of the world (ot)t=1…n and observe the result (g ψ ot = 
ot+1)t=1…n.
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Actions …
• Analogy between the effect of a symmetry g (by the group action φ) on 

the environment (o1, g, g φ o1 = o2), and a transition that uses the 
dynamics f of the environment (ot, at, f(ot, at) = ot+1). It allows us to 
consider a more realistic scenario where we have an agent in an 
environment, and we can apply the group actions to this agent. In our 
analogy we simply say that o1 = ot, o2 = ot+1 and at = g and φ = f.
• So, how to discover the symmetries of the world? Use active 

perception or causal manipulations of the world to empirically 
determine them.
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Back to FEP for a second

• Agents can suppress free energy by changing the two things it 
depends on: they can change sensory input by acting on the world or 
they can change their recognition density by changing their internal 
states.
• Action can reduce free energy only by increasing accuracy (that is, 

selectively sampling data that are predicted).
• Conversely, optimizing brain states makes the representation an 

approximate conditional density on the causes of sensory input. This 
enables action to avoid surprising sensory input.
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Crisis … what crisis?

• Choose actions that minimize surprise (FEP)!
• That is, follow a variational principle.
• Such principle will, in turn, be formalized as 

symmetry groups.
• Importantly, it will constraint the the agent’s 

policy (sequence of actions, aka trajectory or
path), that is, the dynamics of the system (its
“law of motion”).
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Ma non troppo

• FEP is not the only variational principle of cognition
(e.g., Betti and Gori).
• At the end of the day, FEP also relies in priors.
• There is no evidence of FEP nor that the brain optimizes a 

given function nor that the brain operates as a Bayesian 
inference engine.
• Actions are not strictly necessary to learn. Associative learning, 

Pavlovian (aka classical) conditioning in particular, occurs any 
time two events (stimuli) are presented “together”.
• There is plenty of evidence for associative learning. 
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Stop the press!
• Quessard, Barrett and Clements claim that they have a come up with a 

framework in which agents learn the underlying group structure of 
environments and disentangled representations without any prior 
knowledge of the symmetry group.
• They assume a “large” symmetry group, SO(n), and define a metric on 

disentanglement --acting on a minimum dimension.
• They assume a certain structure (compositional rotation) for the group 

actions.
• Does this qualify as “no prior knowledge”? 

• Nice thing: they extend previous work to continuous symmetries. Pfau et 
al., have also recently proposed to work with Lie Groups, but can only be 
learned if the true metric of the manifold is known.

20



In summary
• Symmetries have been proposed as a tool to establish 

disentangled representations. They reflect structure (reduce 
dimensionality) and may be instrumental for generalization 
and transfer learning.
• The world shows symmetries.
• Which,, allegedly, we learn by interacting with it.
• Useful “isomorphism” between “action” (as an agent) and group 

actions (transformations).
• Groups formalize the notion of symmetry.
• Symmetries (and groups) embed variational principles.
• The Free Energy Principle is one of such principles which 

proposes to minimize surprise by action and prediction.
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Group

Groupoid

• Mathematically, the fifteen puzzle is similar to 
Rubik’s cube: the goal is to arrive to a certain 
position by performing the correct sequence of 
moves. However, unlike the Rubik’s cube, the 
available moves depend on the current position. 
For example, if the blank square is in the lower-right 
corner, it can only be moved left or up.

• Unlike the transformations of the Rubik’s cube, 
transformations of the fifteen puzzle cannot always 
be composed. Specifically, you can only compose 
two transformations if the ending position of the 
first is the same as the starting position of the 
second.

• The former is a group, the latter a groupoid.
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• A group is a special case of a groupoid.
• Groups are groupoids that have only one object. A groupoid is a 

group with many objects (positions in the example). 

Algebraically …
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Good or bad?
• A sphere has (lots of) symmetry.
• A bowling ball may not show total symmetries, 

yet it has obvious partial symmetries.
• Without the notion of groupoid, such 

symmetries are lost.
• Besides, in real systems, symmetries are 

formed and broken (new symmetries emerge) 
–which cannot be explained using groups.
• This also affects the evolution in the 

representations of objects.
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Let’s put it another way
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Yves Klein, IKB 191, 1962
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One more intuition
• Groupoids describe reversible processes which 

may traverse a number of states. 
• One approach to capturing the topology of the European road system is to list 

the journeys one can make beginning and ending in Bilbao. 
• However, it might appear a little strange to privilege Bilbao and the act of 

staying put there. Each city might be thought to deserve equal treatment.
• Moreover, if you want to know about trips from Paris to Rome, it would seem 

perverse to have to sift through the set of round trips from Bilbao which pass 
through Paris and then Rome. 
• More reasonable, then, to list all trips between any pair of cities, where 

ordered pairs of trips can be composed, if and only if the destination of the 
first trip matches the starting point of the second. 
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Groupoid (algebraic structure and category)
• A groupoid is a set, G, together with and a partial 

function • (it is not necessarily defined for all elements 
of G, that is, • is not a binary operation).
• A groupoid is a category in which every morphism is an 

isomorphism, i.e. invertible.
• The collapse of a groupoid into a mere collection of 

groups loses some information because it is not 
(categorically) natural.
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Grand finale! • Categories abstract away from objects and focus on 
relations (maps or morphisms). Objects are only 
understood in terms of their relations to other 
objects (categories give an interpretative context, 
semantics or type).
• They are hierarchical, in that relations between 

categories are formalized as structure-preserving 
functors, and between functors as natural 
transformations, etc. forming n-categories.
• Groupoids are, in essence, 2-categories –that is, 

groupoids form hierarchies (whereas groups don’t).
• Maps in categories can also represent processes as 

dictated by dynamic laws (e.g., using string 
diagrams). Processes need also to preserve 
structure, that is, symmetries that embed variational 
principles.
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Summary on groups and groupoids

• We may need richer structures that show partial 
symmetries among multiple objects, and that form 
hierarchies naturally.
• Groupoids seem to be a promising area to investigate (and 

their relation to group actions).
• They also encode symmetry breaking, which refers to 

creativity.
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